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Abstract
Accurate delineation of organs at risk (OAR) is a crucial step in radiotherapy to ensure efficient treatment
delivery. However, the delineation process is labor-intensive and prone to inter-observer variation. As a solution,
MRI Planner (Spectronic Medical AB, Helsingborg, Sweden), distributed as commercially available software,
provides automated organ delineations using only a single standard MRI acquisition. The aim of this study is
to quantitatively evaluate the quality of these automatically generated delineations for OAR in the male pelvic
anatomy.
Forty-one prostate cancer patients from multiple centers were included in the study. The bladder, femoral heads
and rectum were considered as OAR for the treatment. For every patient, ground-truth segmentations were
manually created and automated segmentations were generated by the MRI Planner software. Testing of the
segmentation performance was done by comparing multiple quantitative similarity metrics between automated
and corresponding ground-truth manual OAR segmentations for each case. The dice similarity coefficient (DSC),
mean surface distance (MSD), volume similarity (Volsim) and surface DSC (SDSC) were computed for the femoral
heads, rectum and bladder structures.
Evaluation results showed accurate segmentation performance. Average DSC results were 0.96±0.01 (femoral
heads), 0.95±0.03 (bladder) and 0.90±0.02 (rectum). Mean SDSC values at distance tolerance of 3mm were
0.99±0.01, 0.98±0.03 and 0.95±0.03 for femoral heads, bladder and rectum respectively. The average MSD
obtained were 0.53±0.29 mm (bladder), 0.83±0.24 mm (rectum) and 0.43±0.11 mm (femoral heads).
Volume differences were on average not larger than 5% for bladder and rectum and not larger than 3% for
the femoral heads. The quantitative metrics show that our software provides highly accurate segmentation
performance and indicate that the use of MRI Planner is an effective way to improve the prostate radiotherapy
workflow.
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Example images of a typical case. On top the incoming MR with contours of the bladder, rectum and femoral
heads. In the bottom row the synthetic CT with an overlay of MR-based contours. In axial, sagittal and coronal
directions from left to right.
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1. Introduction
An important step in the current radiotherapy workflow is
accurate delineation of organs-at-risk (OAR) to minimize radi-
ation induced toxicities in healthy tissues. Manual delineation
is a time-consuming and labor-intensive repetitive task. More-
over, the process is sensitive to inter-observer variability [1].

Auto-segmentation algorithms using deep learning frame-
works are quickly gaining ground in medical image segmen-
tation [2]. Automatic OAR segmentation methods in the
radiotherapy field reduce variability and decrease the labor-
intensive nature of OAR delineation, while achieving high
agreement between automated and manual delineations.

The MRI Planner (Spectronic Medical, Helsingborg, Swe-
den) software generates synthetic CT images from MRI using
the deep-learning driven transfer function estimation (TFE)
algorithm [3], for use in MRI only radiotherapy treatment
planning. In addition to synthetic CT images, it also provides
automated delineations of organs at risk from a single standard
MRI acquisition. MRI Planner is a commercially available
CE marked software that can be installed on a computer at the
hospital. MRI Planner uses standard DICOM files to allow for
seamless integration with both MRI scanners and treatment
planning systems.

The aim of this study is to evaluate the quality of the auto-
matically generated structures by comparing several quan-
titative similarity metrics, between manual segmentations
(serving as ground-truth) and automatically generated seg-
mentations for prostate radiotherapy planning.

2. Methods
2.A Data
Forty-one patients with prostate cancer undergoing radiother-
apy were retrospectively included in this multi-center evalua-
tion study. T2-weighted MR images were acquired at three
different radiotherapy centers in Sweden, using 3T GE Discov-
ery, 3T GE Signa and 1.5T Siemens Aera MRI scanners. Imag-
ing was performed as part of a previous non-interventional
multicenter study[4]. Patients with one or multiple hernias of
the bladder were excluded for this study.

2.B Segmentations
The femoral heads, the bladder and the rectum were defined as
OARs. The delineations used for the ground-truth rectum seg-
mentations were drawn according to the ESTRO guidelines
formed by Salembier et al [5]. The bladder was manually seg-
mented including the bladder wall and femurs were segmented
by manual delineation of the femoral heads.

The automated segmentations were generated by the deep
learning driven MRI Planner (v2.3) software (Spectronic Med-
ical AB, Helsingborg, Sweden)[3].

2.C Evaluation
The dice similarity coefficient (DSC), mean surface distance
(MSD), volume similarity (Volsim) and surface DSC (SDSC)
are used as quantitative measures to evaluate the automatically
generated delineations. For each patient, the metrics were
compared between automatically generated and ground truth
delineations. The DSC is defined in equation 1 where GT
(ground truth) and INF (inferred) refer to the volumes of the
manual and automatically generated delineations respectively.
|GT ∩ INF | represents the intersection and |GT |+|INF | the
union of GT and INF.

DSC =
2|GT ∩ INF |
|GT |+|INF |

(1)

While DSC indicates geometrical similarity between two
structures, it does not necessarily relate to clinical importance
and/or time needed to do contour adaptations. The surface
dice coefficient (SDSC) proposed by Nikolov et al. indicates
the overlap of two surfaces instead of two volumes at a speci-
fied distance tolerance τ [6]. Resulting values range between
0 and 1, where a higher value corresponds to reduced likeli-
ness that the contour needs manual adjustments/corrections.
Calculations were done using the open source DeepMind im-
plementation of the surface DSC [7].

The volumetric similarity is defined in equation 2 with
INF and GT referring to the volume of the automated and
manual delineations respectively. The Volsim indicates the
volume difference of the predicted segmentation with respect
to the ground truth segmentation.

(2)Volsim =
2(INF − GT )

INF + GT

The MSD (equation 3) is used as a symmetric measure,
using the mean of the euclidean distances in mm from the
contour points of the GT segment to the contour of the INF
segment, and vice versa.

(3)MSD = mean
(

mean( d
x∼X

(x,Y )),mean( d
y∼Y

(y,X))
)

with d = euclidean distance from a point on contour A to
contour B.
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Figure 1. Violinplots showing the distribution of results across cases for femoral heads, bladder and rectal structures. The plots
extend to minimum and maximum values along with the median (white dot) and the third to first interquartile range (black bar).
Mean values ± SD are indicated at the bottom in colored text.

The results are obtained by evaluating on the union of
ground-truth and automatically generated delineations in 3D
for the bladder and femoral heads. The cranial boundary of the
rectum is known to be challenging to determine [8], resulting
in a possible variation between manual and automatically gen-
erated delineations. To reflect clinically relevant differences
between delineations, rectum delineations are evaluated on
the intersection in caudal-cranial direction and on the union
in anterior-posterior and left-right directions.

3. Results
The mean MSD between manual and automatically generated
delineations ranged between 0.43 mm and 0.63 mm for all
structures and the mean volumetric similarity between -0.04
and 0.05 (Table 1).
The SDSC at a tolerance level of 3mm was 0.97, 0.98 and 0.99
on average for rectum, bladder and femoral heads respectively
(Table 2). Indicating for example that for the rectum 97% of
the automatically generated contour does not deviate more
than 3mm from the manual contour.

Structures MSD [mm] Volsim
[µ±σ ] [µ±σ ]

Bladder
0.53±0.29 −0.04±0.05

Rectum
0.63±0.33 0.05±0.06

Femoral Heads
0.43±0.11 −0.02±0.03

Table 1. The average MSD (mean surface distance) and
average Volsim (volumetric similarity) of the predicted
segmentations compared to the ground-truth segmentations
over all cases.

In Figure 1 the SDSC results for tolerances set at 1mm,
2mm and 3mm are visualized, as well as the DSC. By its
nature, SDSC results improve with higher physical tolerances.

DSC values of 0.92, 0.95 and 0.96 were obtained for
rectum, bladder and femoral heads respectively (Table 2).

In Figure 2 automatically generated delineations for three
example cases are shown together with the manual delin-
eations. Case 1 shows a typical segmentation result, with
negligible differences between automatically generated and
manual contours. Case 2 (sagittal slice) shows a longer rec-
tum contour compared to the manual contour. This example
case also shows the largest femoral head discrepancy seen
across all cases. Case 3 is interesting in the sense that the
automatically generated bladder contour is clearly superior
to the manual contour, since it does not extend into the colon
wall.

Structures DSC SDSC*
[µ±σ ] [µ±σ ]

Bladder
0.95±0.03 0.98±0.03

Rectum
0.92±0.02 0.97±0.06

Femoral Heads
0.96±0.01 0.99±0.01

Table 2. The average DSC (Dice Similarity Coefficient) and
average SDCS (Surface DSC) at [*]τ=3mm of the predicted
segmentations compared to the ground-truth segmentations
over all cases.
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Figure 2. Magenta: Manual, Green: Automatically generated. Column 1: A typical case. Column 2: Axial slice showing the
largest difference in femoral heads across cohort (worst case) and sagittal slice demonstrating a difference in the length of
rectum contours. Column 3: Axial slice shows the manual contour falsely including part of colon, whereas the automatically
generated contour was able to distinguish between the organs.

4. Discussion
Automatically generated OAR contours provided by the MRI
Planner software are accurate and show high similarity with
manually created contours based on multiple quantitative sim-
ilarity metrics (DSC, SDSC, MSD and Volsim).

Among the OARs, the femoral heads achieved on average
the highest SDSC and DSC and lowest MSD. DSC and MSD
results for all structures are in the top range as compared to
other related work [9, 10, 11, 12, 13, 14, 15]. The femoral
heads yield a DSC of 0.96±0.01, the corresponding range
found in other work is [0.92 - 0.97]. For the bladder and
rectum, we achieved DSC results of 0.95±0.03 and 0.90±0.02
with corresponding ranges from recent literature [0.93 - 0.95]
and [0.84 - 0.92] respectively.

Our MSD results are 0.53±0.29 mm and 0.83±0.24 mm
with ranges in literature of [0.44 -1.37] mm and [0.72 -1.83]
mm for bladder and rectum respectively [10, 12, 13, 14]. The
MSD for femoral heads is not often reported in literature,
so no comparison could be made. We achieved a MSD of
0.43±0.11 mm which is in the order of the in-plane resolution.

The results of the SDSC at τ = 3mm are 0.99±0.01,
0.98±0.03 and 0.95±0.03 for femoral heads, bladder and
rectum and indicate high similarity between automated and
manual contours.

Differences in volume between 3D contours are on aver-
age not larger than 5% for bladder and rectum and not larger
than 3% for the femoral heads.

Some degree of disagreement could be expected as we con-
sider manual delineations as the ground-truth for evaluation in
this work. Taking into account the possible inter-observer vari-

ability the manual contours cannot be considered the perfect
ground-truth but rather a gold standard [16, 17].

The achieved results are in good agreement with the man-
ual delineations. The findings of this study suggests that the
performance of the commercial MRI Planner software is well
on par with state of the art results presented in the scientific
literature.

5. Conclusions
This study demonstrates that MRI Planner creates highly ac-
curate automatically generated delineations of OARs.

By using a deep-learning based method that requires only
a single MR acquisition, the software aids in decreasing the
labor required for OAR delineation and provides excellent
segmentation performance without the need of manual inter-
ventions.

Quantitative metrics show that our software performance
is in the top range compared to recent scientific work and
indicate that the use of MRI Planner is an effective way to
streamline the radiotherapy workflow.
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